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ABSTRACT

'3 A "pooling sets" type of algorithm is developed and shown to
be wvalid for computing an isotonic regression function for a gen-
eral gquasi-order. The method is direct and intuitive. The algo-
rithm works best when the quasi-order is complex and the objective

function is nearly isotonic. An example is worked out in detail.
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1. Introducﬁion.

Consider X to be a finite set which we denote as

X = {xl, xz,...,xm}. Let < be a binary relation on X which is a

quasi-order, i.e. < is reflexive and transitive, (see Barlow,
Bartholomew, Bremner, and Brunk (1972) p.24). We say a real- j
valued function £(-) defined on X is isotonic with respect to :
“<"if x <y implies f£(x) < f(y). A problem that arises in many

different contexts is the following: For a given positive function

w(x), called the weight functien, and an arbitrary function g(x),

find that function g*(x) on X which is isotonic with respect to a

particular quasi-order "<" and minimizes

- 2
iil (g(xi) - h(xi)) w(x,)
over all isotonic functions h(x). This is referred to as the iso-
tonic regression problem. Much of the importance of this problem
hinges on the fact that is solves many seemingly very different
optimization problems (see Barlow et.al. (1972) and Barlow and
Brunk (1972)).

This is of course a quadratic programming problem with spe-
cial types of linear constraints. In certain cases, the solution

is well known and easily computed.

i) Simple ordering case. When "<" is also a simple ordering

(reflexive, transitive, anti~-symmetric, and each pair of elements
is comparable), the problem is greatly simplified. One of the
more common situations is when X consists of real numbers and "<"

is the usual ordering of the real numbers. In this case, a func-

tion is isotonic iff it is nondecreasing. In this situation,




g*(x) caa be efrfected in the following way: Reduce the problem to

fewer dimensioas by pooling adjacent points where reversals occur.
That is, choose xi,xj such that xi < xj, g(xi) > g(xj), and there
does not exist y such that X, ¢y % ox; (if no such pair exists,
‘i "then g(x) = g*i(x)). Now consider the same problem where Xy and

! . xj are considered as one point with weight w(xi) + w(xj), func-
ticnal value

§((xi, xj}) = [g(xi)w(xi) + g(xj)w(xj)][w(xi) + w(xj)]-l,

and the natural ordering (xi,xj} < x if X5 S Xy and xkf{xi,xj}
if %, < xi. This reduction process is continued until a function

k
§ is obtained with no reversals . Then g*(x) = J(x) if x is one

e . L =

of the points making up the pool X. This is the "Pool Adjacent
i Violators Algorithm" first discussed by Ayer et.al. (1955).

F ii) Rooted trees. A more general class of partial orderings that

is important in some problems involves the concept of rooted trees.
In a rooted tree, except for a single element, the root, which has l
no predecessor, each element has exactly one immediate predecessor.

(We say xj is an immediate predecessor of X if xj < Xy and there

does not exist an element y such that X5 <y < xi).

Thompson (1962) has shown that the previous scheme used for
the simple ordering case works providing the poolings are taken
in the correct order. To be more precise, if there exists an
immediate predecessor to X, say x, such that g(xj) > g(xi), call

]
the point x; a violator (of xj) and call xj a viclatee (of xi).
A violator x; is a minimum violator if there dcoces not exist a violator
X, such that g(xk) < g(xi). Thompson showed that if one pools a

minimum violator to its violatee (there exists only one in the
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rooted tree case), redefines the partial order in the natural way,
and continues as _n the case of simple ordering, that one must even-
tually arrive at g*(x). This is often called the "Minimal Violator
Algoritchm".

iii) Partial ordering case. For general partial orders, the so-

lutions become less tractable. A cleocsed form expression for g*
described in Brunk (1953) involves the use of upper and lower sets.
‘a) A < X is an upper set if X; €A and x; ¢ xj implies xjsA.

b) A < X is a lower set if xiaA and x. < Xy implies xjeA.

{A; A is a lower set},

[}

If we let U = {A; A is an upper set}, L

and for any A < X
L glt)w(e)
telA

T w(t)
tcA

Ay (A) =

then

g*(x) = max min Av(A n B). (1.1)
AelU Bel

xXeAnB

Based on this expression for g*(x), there exists a simple algorithm
(Minimum Lower Sets Algorithm) stated in Brunk, Ewing, Utz (1957)
for computing g*. To use this algorithm, first find LlsL such that
Av(Ll) is minimal. Then for xeLl, g*(x) = Av(Ll). Next find LzsL
such that Av(L2 - Ll) is minimal. Then for xeL2 - Ll, g*(x) =
Av(L2 - Ll), etc. This is repeated until uLi = X and g* is com-
pletely determined.

This algorithm is straightforward and direct, but doces have

some shortcomings.

1) The class of all lower sets may be difficult to determine
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and enumerate and/or excessively large. For example, in the

natural partial ordering for the grid X = {(i,3j): i=1,...,a,

j = lrto-,b} defined by
(L,3) ¢ (k,2)if£i < k and § < ¢,

it can be shown by combinatorial techniques that there are

(37h,

a lower sets. This number becomes very large as a and b

become large.

2) Computing the many averages Av(L) for all lower sets may
involve a large amount of effort.

3) If g is nearly isotonic (very few reversals), as much
work (in fact usually more because the Ll' Lz, etc. are small
and hence more minimums must be compared) is required as if

g is far from isotonic.

For these reascns, a scheme similar.to the pooling algorithm of
Thompson for the rooted tree case would be desirable. Since an
arbitrary gquasi-ordering allows a great deal more diversity than
the rooted tree situation, it is not surprising that the general
quasi-order algorithm is more complicated than for the rooted tree
case. As in Thompson's algorithm, poolings are again formed with
the idea of reducing the dimension of the problem. However, in
this case, we must also form temporary or "working”" pools which
may be dissolved later in the algorithm.

After the pooling, our new problem is defined in the natural
way. That is, if the points x and y are pooled, then {x.,y; is

treated as one point with weight w(x) + w(y) and functional valve

Av({x,y}). The ordering is preserved naturally; i.e. {x,y}<z if
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X < 2z or <z and z < {x,vy} 1if z < x or =z < y.
-~ y -~ ~ - ~ -~ y
We remark that poolingsare to be made only between violators

and their immediate predecessors.

2. Justification of aAlgorithm.

Since the algorithm works by pooling points together, we need
some criterion which will justify using the pooling mechanism.
Lemma 2.1 is basic to the algorithm. Lemma 2.l is similar to The-
orem 2.5 of Barlow et.al. (1972) except we need not assume that 31
and X, are "poolable”.

Lemma 2.1. If g* denotes the solution to an isotonic regression
problem and ; denotes the solution to the isotonic regression prob-
lem where %, and x5 are pooled to form y (see section 1 for details
of the pooling), then providing g'(xl) = g*(xz) ’ & and g* agree

in the sense that g*(x) = §(x) , X # Xy 1%q and g* (xl) =g*(x2) =';(y) .

Proof. Suppose h is a function defined on X such that
h(xl) = h(xz) = ¢ and h' 1is a function such that h'(x) = h(x) ,
x ¥y, and h'(y) = c . Note first that h is isotonic on X 4iff

h' is isotonic for the poocled problem. Then the sum of terms in

m 2
z (g(xi) -h(xi) w(xi) (2.1)
i=1

which invelve xl and x2 are

\ 2. [P Y - 2. N
(xq) c) v(xl) + \,(xz) <) d(xz)

’Av({xl,xz})-c)z(w(xl) + w(xz)) + c(xl,x

2¢




where 3 does not depend upon ¢. Since the value of ¢ that mini-
- mizes the left side alsc minimizes the right side, the assumption

that g*(x,) = g*(xz) implies the desired result.

1

Thus if we have points x, and Xy such that Xy < X, and Xy < Xy

1

, we know that we may pool Xy and X, and consider the pooled problem.

,f K " an algorithm due to Von Eeden (see Barlow et.al (1972), page 90)
is of interest to.us. In this scheme, order restricticns are num-
bered sequentially, say Ol' 02,...,09. Let gﬁ denote the solution
to the smaller problem consisting of only the first k constraints.

AN Then consider the k+15% constraint, say h(xi) < h(xj). If

gﬁ(xi) < gi(xj), g£+l = g;. Otherwise, gi+l(xi) = g§+l(xj), which

effectively reduces the problem of finding gi+l to one involving

only k constraints. By induction, one can obtain g* by using the

above result. The problem lies in the inefficiency of the method,

since any pooling may be later broken up. With the observation

that the minimal violator always stays pocled, we may greatly im-

prove upon this scheme for the isotone regression problem.

If A < X, g(x)lA will denote g restricted to A. We can also
consider our isotonic regression problem scaled down to A. That
is, for X5 xjsA, x; < xj(in A) iff x; < xj(in X). We will denote
the solution of our restricted problem by gi. Qf course g*lA is
the overall solution restricted to A. We assume that < is a par-
tial order in the following three lemmas.

Lemma 2.2. If L is a lower set, then gf > g*lL.

Proof. Note first that the upper and lower sets of our restricted
problems are respectively

d. = {AnL; A is an upper set}, and

L

L {BnL; B is a lower set}.

L
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Thus, from (1.1),
g*(x) = max min Av(A"- B7)
A euL B sLL
XeA"n B~

max min Av(A 2 B n L)
AclU Bel

XA 1 B

u - 3 > max min Av(A an B)
[ AeU Bel

Y ‘ . xeA n B
= 9*(x)|L

since Bel = B n Lel and hence L contains at least as many sets as LL

A lemma somewhat similar to lemma 2.2 which we shall need is the

following one.

Lemma 2.3. If A* n B* ¢ C = Al n Bl where A* and Al are upper sets,

B* and Bl are lower sets, and ior all xeA* an B*, g*(x) = Av(A* a B*),

then gé(x) = g*(x) = AV(A* n B*) for x cA* n B*,
Proof. For xcA* n B* we can write

gE(x) = max min Av{(A n»~ B ~ A, 1 B.)
AcgU Bel

xcA 1 B

2 max min Av(A 2 A. . B)

AslU 3Bel L
xeA 1 3
= g*(x), since A* = A* n A




Similarly,

gé(x) = gi? max Av(A 2 B n a; Bl)
€ AglU
Xea ~ 3B
S min max Av(A » B a Bl)
Bel AcelU
XEA 1 B
= g*(x), since B* = B* 1 Bl'

from which the conclusion follows.

Note that this lamma implies that if for any set B,

A.=g*-l(5), then g*(x)}A = gg(x). We will also need lemma 2.4.

Lemma 2.4. If my is a minimal vieolator in X, g*(ml) = g*(v} for

some immediate predecessor v of m, (i.e., m, can be pooled with one

1
of its immediate predecessors.

Proof: Assume g*(ml) > g*(v) for all immediate predecessors v of
m,. Thus if we omit all restraints of the form h(xj) < h(my), the

reduced problem still admits the solution g*. Let

B = {x; g(x) < g(ml)} y {ml}

Since g(x) > g(ml) for all x £ B , we must have g*(x) > g(ml) (see
3
3runk (1963)). Thus if we define

o r* 5
g(x) = & §x), xe3

g(x), XEB,

g(x} 1is isotonic for the reduced problem. To see this, note that




for the original problem, there can be no violators in B save
m, since my is a minimal violator, and hence, for the reduced
problem, there are no violators in B. No peint in B can be a
violatee, since the corresponding violator would have to be in
8 and g* > g(my) > g(z), zeB. Thus 5 satisfies all restrictions
involviig at least one element of B and, from its definitipn,
clearly satisfies all restrictions involving elememts both in B.
However, by Van Eeden's algorithm (see first part of this sec-
tion), & = g*, which is a contradiction, since a vioclatee v of
m, belongs to B and thus g%(v) = g*(v) < g*(my) = g(m,).

Thus the minimal violator must be permanently pooled with
at least one of its immediate predecessors. The following the-
orem answers the question of "Which one?" and serves as the basis

of our algorithm for computing g*. For any point x, we define the

particular lower set L(ml) as being the complement of {y: x < v} .

Theorem 2.1. 1If m is a minimal violator and vy the maximal
immediate predecessor of m, with respect to g* (i.e.
1 L(ml)

qi(ml)(vl) > gi(ml)(v) for all other immediate predecessors
v of ml), then g*(ml) = g*(v).

Proof. Assume g*(ml) > g*(vl). From lemma 2.4, there must exist

some immediate predecessor of m,, say v, such that

g'(ml) = g*(v). (2.2)

Noting that {x;g*(x)=g*(vl)ECL(ml), it follows from Lemma 2.3, that

g*(vl) = gi(ml)(vl) (2.3)
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By definition,
)

(v (v) . (2.4)

gi Z gﬁ
L(ml) 1 L(ml)
Finally, Lemma 2.2 implies

gi(ml)(v) > g*(v) . (2.5)

Combining (2.3), (2.4), (2.5) and (2.2), we have
IV = 9 mp V1) 2 Iy V) 2 97(V) = 9T m )y
which is a contradiction.

3. The Algorithm.

Lemma 2.1 and Theorem 2.1 suggest a pooling algorithm for
obtaining the solution to an isotane regression problem with a
general gquasi-ordering. That is first reduce the gquasi-ordering
problem to a partial ordering problem by sequentially poeling
points x and y where x < y and y < x and redefining the ordering
until all such pairs are coalesced.

If one can solve the partial ordering problem in n
dimensions and is confronted with such a problem in n + 1 di-
mensions, he has only to locate a minimal violator m, . solve the
restricted problem over L(ml) and pool my with the resulting maxi-
mal immediate predecessor (with respect to gi(mlﬂ. This reduces
the problem to n dimensions which can be handled by assumption.
Actually the scheme becomes much more tractable when oﬁe realizes
that one does not have to begin all over again for all lower points
after a pooling is made. Lemma 2.3 and Lemma 3.1 are particularly

aseful in this regard.
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| ' Lemma 3.1. If A and B are disioint and if

galx) , xcA
- gi(x) =

[ gg(x) , Xg¢B ,

then gguB(x) = &(x) if g is isotonic over the set A v B.

Proof. The proof is obvious by writing the sum to be minimized
as the sum over A plus the sum over B.

We note from Lemma 2.3 that if v is the maximal immediate

predecessor of m under gi(m and if

) ’

S A = {yeL(m): gi(m)(y) # gi(m)(v)} ,

PP VR

then gﬁ(m)(x) = g;(x) for all xeA. By using this fact with lemma 3.1,

it is often easv to construct gi(m,) for the next minimal violator m~

Of course one can also describe the algorithm by first finding
maximal violatees, and then pooling these to their (restricted)
minimal violators. For large sets, a combination of the two ap-

proaches is sometimes useful.

4. An Example.
Consider the sixteen points in the plane
X ={(i, 3); i,5 = 1, 2, 3, 4} with the usual planar ordering
(i, 3) < (h, k) if£ i < h and j ¢ k. Assume all weights are
ecual to one and that
g(i,3)
2

.

=N W e
~

LB Y L B e )W ¢ 4

6
0
5

w wn w
~N

<4
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Since the minimal violator is (2,2) and
* '
L(2,2)
4 1.8
3 1.
I 2 1.8 L
- 1 1 4 4 4
T ’
1 2 3 4

we know that (2,2) and (2,1) may be pooled to yield

4 1.8 2 7 6
3 3 1.8 6 5 6
2 {2 s 5.2 5.5
1 \ : 3 4
1 2 3 4
i

Now (2,4) is the new minimal violator and it is easily shown that

9L(2,4) |

4 1.8
;3 1.8 5.5 5.5 6
2 1.8 (2.5\: 5.2 5.5
1 1 3 4

= ) g 7 T

1 2 3 4
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Thus we pool (2,4) with (2,3) to obtain

4 1. ‘4 L7 6
} : :
3 1. vt s 6
3 ¢ N e o T iTeT (4.1)
2 1.8 (2.5 5.2 5.5
1 1 . 4 3 4
1 2 3 4

New, (3,3) is the new minimal violator with g£(3 3) s
e given in expression (4.l1). Pooling (3,3) with (3,2), we then
; have (4,4) as the minimal (only) violator. Pooling (4,4) with

(3,4) we have as the final solution

9(i,9)
| 4 1.8 4 6.5 6.5
' 3 1.8 4 5.1 6
o 1.8 2.5 5.1 5.5
1 1 2.5 3 4 .
t } — =
1 2 3 4
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